Ethereum VM (EVM) Opcodes and Instruction Reference
This reference consolidates EVM opcode information from the yellow paper, stack exchange, solidity source, parity source, evm-opcode-gas-costs and Manticore.
Notes
The size of a "word" in EVM is 256 bits.
The gas information is a work in progress. If an asterisk is in the Gas column, the base cost is shown but may vary based on the opcode arguments.
Table
Opcode | Name | Description | Extra Info | Gas |
---|---|---|---|---|
0x00 | STOP | Halts execution | - | 0 |
0x01 | ADD | Addition operation | - | 3 |
0x02 | MUL | Multiplication operation | - | 5 |
0x03 | SUB | Subtraction operation | - | 3 |
0x04 | DIV | Integer division operation | - | 5 |
0x05 | SDIV | Signed integer division operation (truncated) | - | 5 |
0x06 | MOD | Modulo remainder operation | - | 5 |
0x07 | SMOD | Signed modulo remainder operation | - | 5 |
0x08 | ADDMOD | Modulo addition operation | - | 8 |
0x09 | MULMOD | Modulo multiplication operation | - | 8 |
0x0a | EXP | Exponential operation | - | 10* |
0x0b | SIGNEXTEND | Extend length of two's complement signed integer | - | 5 |
0x0c - 0x0f | Unused | Unused | - | |
0x10 | LT | Less-than comparison | - | 3 |
0x11 | GT | Greater-than comparison | - | 3 |
0x12 | SLT | Signed less-than comparison | - | 3 |
0x13 | SGT | Signed greater-than comparison | - | 3 |
0x14 | EQ | Equality comparison | - | 3 |
0x15 | ISZERO | Simple not operator | - | 3 |
0x16 | AND | Bitwise AND operation | - | 3 |
0x17 | OR | Bitwise OR operation | - | 3 |
0x18 | XOR | Bitwise XOR operation | - | 3 |
0x19 | NOT | Bitwise NOT operation | - | 3 |
0x1a | BYTE | Retrieve single byte from word | - | 3 |
0x1b | SHL | Shift Left | EIP145 | 3 |
0x1c | SHR | Logical Shift Right | EIP145 | 3 |
0x1d | SAR | Arithmetic Shift Right | EIP145 | 3 |
0x20 | KECCAK256 | Compute Keccak-256 hash | - | 30* |
0x21 - 0x2f | Unused | Unused | ||
0x30 | ADDRESS | Get address of currently executing account | - | 2 |
0x31 | BALANCE | Get balance of the given account | - | 700 |
0x32 | ORIGIN | Get execution origination address | - | 2 |
0x33 | CALLER | Get caller address | - | 2 |
0x34 | CALLVALUE | Get deposited value by the instruction/transaction responsible for this execution | - | 2 |
0x35 | CALLDATALOAD | Get input data of current environment | - | 3 |
0x36 | CALLDATASIZE | Get size of input data in current environment | - | 2* |
0x37 | CALLDATACOPY | Copy input data in current environment to memory | - | 3 |
0x38 | CODESIZE | Get size of code running in current environment | - | 2 |
0x39 | CODECOPY | Copy code running in current environment to memory | - | 3* |
0x3a | GASPRICE | Get price of gas in current environment | - | 2 |
0x3b | EXTCODESIZE | Get size of an account's code | - | 700 |
0x3c | EXTCODECOPY | Copy an account's code to memory | - | 700* |
0x3d | RETURNDATASIZE | Pushes the size of the return data buffer onto the stack | EIP 211 | 2 |
0x3e | RETURNDATACOPY | Copies data from the return data buffer to memory | EIP 211 | 3 |
0x3f | EXTCODEHASH | Returns the keccak256 hash of a contract's code | EIP 1052 | 700 |
0x40 | BLOCKHASH | Get the hash of one of the 256 most recent complete blocks | - | 20 |
0x41 | COINBASE | Get the block's beneficiary address | - | 2 |
0x42 | TIMESTAMP | Get the block's timestamp | - | 2 |
0x43 | NUMBER | Get the block's number | - | 2 |
0x44 | DIFFICULTY | Get the block's difficulty | - | 2 |
0x45 | GASLIMIT | Get the block's gas limit | - | 2 |
0x46 | CHAINID | Returns the current chain’s EIP-155 unique identifier | EIP 1344 | 2 |
0x47 | SELFBALANCE | Returns the balance of the currently executing account | - | 5 |
0x48 | BASEFEE | Returns the value of the base fee of the current block it is executing in. | EIP 3198 | 2 |
0x49 | BLOBHASH | Returns the transaction blob versioned hash at the given index, or 0 if the index is greater than the number of versioned hashes | EIP-4844 | 3 |
0x4a | BLOBBASEFEE | Returns the value of the blob base fee of the current block it is executing in | EIP-7516 | 2 |
0x4b - 0x4f | Unused | - | ||
0x50 | POP | Remove word from stack | - | 2 |
0x51 | MLOAD | Load word from memory | - | 3* |
0x52 | MSTORE | Save word to memory | - | 3* |
0x53 | MSTORE8 | Save byte to memory | - | 3 |
0x54 | SLOAD | Load word from storage | - | 800 |
0x55 | SSTORE | Save word to storage | - | 20000** |
0x56 | JUMP | Alter the program counter | - | 8 |
0x57 | JUMPI | Conditionally alter the program counter | - | 10 |
0x58 | PC | Get the value of the program counter prior to the increment | - | 2 |
0x59 | MSIZE | Get the size of active memory in bytes | - | 2 |
0x5a | GAS | Get the amount of available gas, including the corresponding reduction for the cost of this instruction | - | 2 |
0x5b | JUMPDEST | Mark a valid destination for jumps | - | 1 |
0x5c | TLOAD | Load word from transient storage | EIP-1153 | 100 |
0x5d | TSTORE | Save word to transient storage | EIP-1153 | 100 |
0x5e | MCOPY | Copy memory from one area to another | EIP-5656 | 3+3*words* |
0x5f | PUSH0 | Place the constant value 0 on stack | EIP-3855 | 2 |
0x60 | PUSH1 | Place 1 byte item on stack | - | 3 |
0x61 | PUSH2 | Place 2-byte item on stack | - | 3 |
0x62 | PUSH3 | Place 3-byte item on stack | - | 3 |
0x63 | PUSH4 | Place 4-byte item on stack | - | 3 |
0x64 | PUSH5 | Place 5-byte item on stack | - | 3 |
0x65 | PUSH6 | Place 6-byte item on stack | - | 3 |
0x66 | PUSH7 | Place 7-byte item on stack | - | 3 |
0x67 | PUSH8 | Place 8-byte item on stack | - | 3 |
0x68 | PUSH9 | Place 9-byte item on stack | - | 3 |
0x69 | PUSH10 | Place 10-byte item on stack | - | 3 |
0x6a | PUSH11 | Place 11-byte item on stack | - | 3 |
0x6b | PUSH12 | Place 12-byte item on stack | - | 3 |
0x6c | PUSH13 | Place 13-byte item on stack | - | 3 |
0x6d | PUSH14 | Place 14-byte item on stack | - | 3 |
0x6e | PUSH15 | Place 15-byte item on stack | - | 3 |
0x6f | PUSH16 | Place 16-byte item on stack | - | 3 |
0x70 | PUSH17 | Place 17-byte item on stack | - | 3 |
0x71 | PUSH18 | Place 18-byte item on stack | - | 3 |
0x72 | PUSH19 | Place 19-byte item on stack | - | 3 |
0x73 | PUSH20 | Place 20-byte item on stack | - | 3 |
0x74 | PUSH21 | Place 21-byte item on stack | - | 3 |
0x75 | PUSH22 | Place 22-byte item on stack | - | 3 |
0x76 | PUSH23 | Place 23-byte item on stack | - | 3 |
0x77 | PUSH24 | Place 24-byte item on stack | - | 3 |
0x78 | PUSH25 | Place 25-byte item on stack | - | 3 |
0x79 | PUSH26 | Place 26-byte item on stack | - | 3 |
0x7a | PUSH27 | Place 27-byte item on stack | - | 3 |
0x7b | PUSH28 | Place 28-byte item on stack | - | 3 |
0x7c | PUSH29 | Place 29-byte item on stack | - | 3 |
0x7d | PUSH30 | Place 30-byte item on stack | - | 3 |
0x7e | PUSH31 | Place 31-byte item on stack | - | 3 |
0x7f | PUSH32 | Place 32-byte (full word) item on stack | - | 3 |
0x80 | DUP1 | Duplicate 1st stack item | - | 3 |
0x81 | DUP2 | Duplicate 2nd stack item | - | 3 |
0x82 | DUP3 | Duplicate 3rd stack item | - | 3 |
0x83 | DUP4 | Duplicate 4th stack item | - | 3 |
0x84 | DUP5 | Duplicate 5th stack item | - | 3 |
0x85 | DUP6 | Duplicate 6th stack item | - | 3 |
0x86 | DUP7 | Duplicate 7th stack item | - | 3 |
0x87 | DUP8 | Duplicate 8th stack item | - | 3 |
0x88 | DUP9 | Duplicate 9th stack item | - | 3 |
0x89 | DUP10 | Duplicate 10th stack item | - | 3 |
0x8a | DUP11 | Duplicate 11th stack item | - | 3 |
0x8b | DUP12 | Duplicate 12th stack item | - | 3 |
0x8c | DUP13 | Duplicate 13th stack item | - | 3 |
0x8d | DUP14 | Duplicate 14th stack item | - | 3 |
0x8e | DUP15 | Duplicate 15th stack item | - | 3 |
0x8f | DUP16 | Duplicate 16th stack item | - | 3 |
0x90 | SWAP1 | Exchange 1st and 2nd stack items | - | 3 |
0x91 | SWAP2 | Exchange 1st and 3rd stack items | - | 3 |
0x92 | SWAP3 | Exchange 1st and 4th stack items | - | 3 |
0x93 | SWAP4 | Exchange 1st and 5th stack items | - | 3 |
0x94 | SWAP5 | Exchange 1st and 6th stack items | - | 3 |
0x95 | SWAP6 | Exchange 1st and 7th stack items | - | 3 |
0x96 | SWAP7 | Exchange 1st and 8th stack items | - | 3 |
0x97 | SWAP8 | Exchange 1st and 9th stack items | - | 3 |
0x98 | SWAP9 | Exchange 1st and 10th stack items | - | 3 |
0x99 | SWAP10 | Exchange 1st and 11th stack items | - | 3 |
0x9a | SWAP11 | Exchange 1st and 12th stack items | - | 3 |
0x9b | SWAP12 | Exchange 1st and 13th stack items | - | 3 |
0x9c | SWAP13 | Exchange 1st and 14th stack items | - | 3 |
0x9d | SWAP14 | Exchange 1st and 15th stack items | - | 3 |
0x9e | SWAP15 | Exchange 1st and 16th stack items | - | 3 |
0x9f | SWAP16 | Exchange 1st and 17th stack items | - | 3 |
0xa0 | LOG0 | Append log record with no topics | - | 375 |
0xa1 | LOG1 | Append log record with one topic | - | 750 |
0xa2 | LOG2 | Append log record with two topics | - | 1125 |
0xa3 | LOG3 | Append log record with three topics | - | 1500 |
0xa4 | LOG4 | Append log record with four topics | - | 1875 |
0xa5 - 0xaf | Unused | - | ||
0xb0 | JUMPTO | Tentative libevmasm has different numbers | EIP 615 | |
0xb1 | JUMPIF | Tentative | EIP 615 | |
0xb2 | JUMPSUB | Tentative | EIP 615 | |
0xb4 | JUMPSUBV | Tentative | EIP 615 | |
0xb5 | BEGINSUB | Tentative | EIP 615 | |
0xb6 | BEGINDATA | Tentative | EIP 615 | |
0xb8 | RETURNSUB | Tentative | EIP 615 | |
0xb9 | PUTLOCAL | Tentative | EIP 615 | |
0xba | GETLOCAL | Tentative | EIP 615 | |
0xbb - 0xe0 | Unused | - | ||
0xe1 | SLOADBYTES | Only referenced in pyethereum | - | - |
0xe2 | SSTOREBYTES | Only referenced in pyethereum | - | - |
0xe3 | SSIZE | Only referenced in pyethereum | - | - |
0xe4 - 0xef | Unused | - | ||
0xf0 | CREATE | Create a new account with associated code | - | 32000 |
0xf1 | CALL | Message-call into an account | - | Complicated |
0xf2 | CALLCODE | Message-call into this account with alternative account's code | - | Complicated |
0xf3 | RETURN | Halt execution returning output data | - | 0 |
0xf4 | DELEGATECALL | Message-call into this account with an alternative account's code, but persisting into this account with an alternative account's code | - | Complicated |
0xf5 | CREATE2 | Create a new account and set creation address to sha3(sender + sha3(init code)) % 2**160 | - | |
0xf6 - 0xf9 | Unused | - | - | |
0xfa | STATICCALL | Similar to CALL, but does not modify state | - | 40 |
0xfb | Unused | - | - | |
0xfd | REVERT | Stop execution and revert state changes, without consuming all provided gas and providing a reason | - | 0 |
0xfe | INVALID | Designated invalid instruction | - | 0 |
0xff | SELFDESTRUCT | Sends all ETH to the target. If executed in the same transaction a contract was created, register the account for later deletion | EIP-6780 | 5000* |
Instruction Details
STOP
0x00
() => ()
halts execution
ADD
0x01
Takes two words from stack, adds them, then pushes the result onto the stack.
(a, b) => (c)
c = a + b
MUL
0x02
(a, b) => (c)
c = a * b
SUB
0x03
(a, b) => (c)
c = a - b
DIV
0x04
(a, b) => (c)
c = a / b
SDIV
0x05
(a: int256, b: int256) => (c: int256)
c = a / b
MOD
0x06
(a, b) => (c)
c = a % b
SMOD
0x07
(a: int256, b: int256) => (c: int256)
c = a % b
ADDMOD
0x08
(a, b, m) => (c)
c = (a + b) % m
MULMOD
0x09
(a, b, m) => (c)
c = (a * b) % m
EXP
0x0a
(a, b, m) => (c)
c = (a * b) % m
SIGNEXTEND
0x0b
(b, x) => (y)
y = SIGNEXTEND(x, b)
sign extends x from (b + 1) * 8 bits to 256 bits.
LT
0x10
(a, b) => (c)
c = a < b
all values interpreted as uint256
GT
0x11
(a, b) => (c)
c = a > b
all values interpreted as uint256
SLT
0x12
(a, b) => (c)
c = a < b
all values interpreted as int256
SGT
0x13
(a, b) => (c)
c = a > b
all values interpreted as int256
EQ
0x14
Pops 2 elements off the stack and pushes the value 1 to the stack in case they're equal, otherwise the value 0.
(a, b) => (c)
c = a == b
ISZERO
0x15
(a) => (c)
c = a == 0
AND
0x16
(a, b) => (c)
c = a & b
OR
0x17
(a, b) => (c)
c = a | b
XOR
0x18
(a, b) => (c)
c = a ^ b
NOT
0x19
(a) => (c)
c = ~a
BYTE
0x1a
(i, x) => (y)
y = (x >> (248 - i * 8) & 0xff
SHL
0x1b
Pops 2 elements from the stack and pushes the second element onto the stack shifted left by the shift amount (first element).
(shift, value) => (res)
res = value << shift
SHR
0x1c
Pops 2 elements from the stack and pushes the second element onto the stack shifted right by the shift amount (first element).
(shift, value) => (res)
res = value >> shift
SAR
0x1d
(shift, value) => (res)
res = value >> shift
value: int256
KECCAK256
0x20
(offset, len) => (hash)
hash = keccak256(memory[offset:offset+len])
ADDRESS
0x30
() => (address(this))
BALANCE
0x31
() => (address(this).balance)
ORIGIN
0x32
() => (tx.origin)
CALLER
0x33
() => (msg.sender)
CALLVALUE
0x34
() => (msg.value)
CALLDATALOAD
0x35
(index) => (msg.data[index:index+32])
CALLDATASIZE
0x36
() => (msg.data.size)
CALLDATACOPY
0x37
(memOffset, offset, length) => ()
memory[memOffset:memOffset+len] = msg.data[offset:offset+len]
CODESIZE
0x38
() => (address(this).code.size)
CODECOPY
0x39
(memOffset, codeOffset, len) => ()
memory[memOffset:memOffset+len] = address(this).code[codeOffset:codeOffset+len]
GASPRICE
0x3a
() => (tx.gasprice)
EXTCODESIZE
0x3b
(addr) => (address(addr).code.size)
EXTCODECOPY
0x3c
(addr, memOffset, offset, length) => ()
memory[memOffset:memOffset+len] = address(addr).code[codeOffset:codeOffset+len]
RETURNDATASIZE
0x3d
() => (size)
size = RETURNDATASIZE()
The number of bytes that were returned from the last ext call
RETURNDATACOPY
0x3e
(memOffset, offset, length) => ()
memory[memOffset:memOffset+len] = RETURNDATA[codeOffset:codeOffset+len]
RETURNDATA is the data returned from the last external call
EXTCODEHASH
0x3f
(addr) => (hash)
hash = address(addr).exists ? keccak256(address(addr).code) : 0
BLOCKHASH
0x40
(number) => (hash)
hash = block.blockHash(number)
COINBASE
0x41
() => (block.coinbase)
TIMESTAMP
0x42
() => (block.timestamp)
NUMBER
0x43
() => (block.number)
DIFFICULTY
0x44
() => (block.difficulty)
GASLIMIT
0x45
() => (block.gaslimit)
CHAINID
0x46
() => (chainid)
where chainid = 1 for mainnet & some other value for other networks
SELFBALANCE
0x47
() => (address(this).balance)
BASEFEE
0x48
() => (block.basefee)
current block's base fee (related to EIP1559)
BLOBHASH
0x49
(index) => (tx.blob_versioned_hashes[index])
the transaction blob versioned hash at the given index, or 0
if the index is greater than the number of versioned hashes (EIP-4844)
BLOBBASEFEE
0x4a
() => (block.blobbasefee)
current block's blob base fee (EIP-7516)
POP
0x50
(a) => ()
discards the top stack item
MLOAD
0x51
(offset) => (value)
value = memory[offset:offset+32]
MSTORE
0x52
Saves a word to the EVM memory. Pops 2 elements from stack - the first element being the word memory address where the saved value (second element popped from stack) will be stored.
(offset, value) => ()
memory[offset:offset+32] = value
MSTORE8
0x53
(offset, value) => ()
memory[offset:offset+32] = value & 0xff
SLOAD
0x54
Pops 1 element off the stack, that being the key which is the storage slot and returns the read value stored there.
(key) => (value)
value = storage[key]
SSTORE
0x55
Pops 2 elements off the stack, the first element being the key and the second being the value which is then stored at the storage slot represented from the first element (key).
(key, value) => ()
storage[key] = value
JUMP
0x56
(dest) => ()
pc = dest
JUMPI
0x57
Conditional - Pops 2 elements from the stack, the first element being the jump location and the second being the value 0 (false) or 1 (true). If the value’s 1 the PC will be altered and the jump executed. Otherwise, the value will be 0 and the PC will remain the same and execution unaltered.
(dest, cond) => ()
pc = cond ? dest : pc + 1
PC
0x58
() => (pc)
MSIZE
0x59
() => (memory.size)
GAS
0x5a
() => (gasRemaining)
not including the gas required for this opcode
JUMPDEST
0x5b
() => ()
noop, marks a valid jump destination
TLOAD
0x5c
Pops 1 element off the stack, that being the key which is the transient storage slot and returns the read value stored there (EIP-1153).
(key) => (value)
value = transient_storage[key]
TSTORE
0x5d
Pops 2 elements off the stack, the first element being the key and the second being the value which is then stored at the transient storage slot represented from the first element (key) (EIP-1153).
(key, value) => ()
transient_storage[key] = value
MCOPY
0x5e
(dstOffset, srcOffset, length) => ()
memory[dstOffset:dstOffset+length] = memory[srcOffset:srcOffset+length]
PUSH0
0x5f
The constant value 0 is pushed onto the stack.
() => (0)
PUSH1
0x60
The following byte is read from PC, placed into a word, then this word is pushed onto the stack.
() => (address(this).code[pc+1:pc+2])
PUSH2
0x61
() => (address(this).code[pc+2:pc+3])
PUSH3
0x62
() => (address(this).code[pc+3:pc+4])
PUSH4
0x63
() => (address(this).code[pc+4:pc+5])
PUSH5
0x64
() => (address(this).code[pc+5:pc+6])
PUSH6
0x65
() => (address(this).code[pc+6:pc+7])
PUSH7
0x66
() => (address(this).code[pc+7:pc+8])
PUSH8
0x67
() => (address(this).code[pc+8:pc+9])
PUSH9
0x68
() => (address(this).code[pc+9:pc+10])
PUSH10
0x69
() => (address(this).code[pc+10:pc+11])
PUSH11
0x6a
() => (address(this).code[pc+11:pc+12])
PUSH12
0x6b
() => (address(this).code[pc+12:pc+13])
PUSH13
0x6c
() => (address(this).code[pc+13:pc+14])
PUSH14
0x6d
() => (address(this).code[pc+14:pc+15])
PUSH15
0x6e
() => (address(this).code[pc+15:pc+16])
PUSH16
0x6f
() => (address(this).code[pc+16:pc+17])
PUSH17
0x70
() => (address(this).code[pc+17:pc+18])
PUSH18
0x71
() => (address(this).code[pc+18:pc+19])
PUSH19
0x72
() => (address(this).code[pc+19:pc+20])
PUSH20
0x73
() => (address(this).code[pc+20:pc+21])
PUSH21
0x74
() => (address(this).code[pc+21:pc+22])
PUSH22
0x75
() => (address(this).code[pc+22:pc+23])
PUSH23
0x76
() => (address(this).code[pc+23:pc+24])
PUSH24
0x77
() => (address(this).code[pc+24:pc+25])
PUSH25
0x78
() => (address(this).code[pc+25:pc+26])
PUSH26
0x79
() => (address(this).code[pc+26:pc+27])
PUSH27
0x7a
() => (address(this).code[pc+27:pc+28])
PUSH28
0x7b
() => (address(this).code[pc+28:pc+29])
PUSH29
0x7c
() => (address(this).code[pc+29:pc+30])
PUSH30
0x7d
() => (address(this).code[pc+30:pc+31])
PUSH31
0x7e
() => (address(this).code[pc+31:pc+32])
PUSH32
0x7f
() => (address(this).code[pc+32:pc+33])
DUP1
0x80
(1) => (1, 1)
DUP2
0x81
(1, 2) => (2, 1, 2)
DUP3
0x82
(1, 2, 3) => (3, 1, 2, 3)
DUP4
0x83
(1, ..., 4) => (4, 1, ..., 4)
DUP5
0x84
(1, ..., 5) => (5, 1, ..., 5)
DUP6
0x85
(1, ..., 6) => (6, 1, ..., 6)
DUP7
0x86
(1, ..., 7) => (7, 1, ..., 7)
DUP8
0x87
(1, ..., 8) => (8, 1, ..., 8)
DUP9
0x88
(1, ..., 9) => (9, 1, ..., 9)
DUP10
0x89
(1, ..., 10) => (10, 1, ..., 10)
DUP11
0x8a
(1, ..., 11) => (11, 1, ..., 11)
DUP12
0x8b
(1, ..., 12) => (12, 1, ..., 12)
DUP13
0x8c
(1, ..., 13) => (13, 1, ..., 13)
DUP14
0x8d
(1, ..., 14) => (14, 1, ..., 14)
DUP15
0x8e
(1, ..., 15) => (15, 1, ..., 15)
DUP16
0x8f
(1, ..., 16) => (16, 1, ..., 16)
SWAP1
0x90
(1, 2) => (2, 1)
SWAP2
0x91
(1, 2, 3) => (3, 2, 1)
SWAP3
0x92
(1, ..., 4) => (4, ..., 1)
SWAP4
0x93
(1, ..., 5) => (5, ..., 1)
SWAP5
0x94
(1, ..., 6) => (6, ..., 1)
SWAP6
0x95
(1, ..., 7) => (7, ..., 1)
SWAP7
0x96
(1, ..., 8) => (8, ..., 1)
SWAP8
0x97
(1, ..., 9) => (9, ..., 1)
SWAP9
0x98
(1, ..., 10) => (10, ..., 1)
SWAP10
0x99
(1, ..., 11) => (11, ..., 1)
SWAP11
0x9a
(1, ..., 12) => (12, ..., 1)
SWAP12
0x9b
(1, ..., 13) => (13, ..., 1)
SWAP13
0x9c
(1, ..., 14) => (14, ..., 1)
SWAP14
0x9d
(1, ..., 15) => (15, ..., 1)
SWAP15
0x9e
(1, ..., 16) => (16, ..., 1)
SWAP16
0x9f
(1, ..., 17) => (17, ..., 1)
LOG0
0xa0
(offset, length) => ()
emit(memory[offset:offset+length])
LOG1
0xa1
(offset, length, topic0) => ()
emit(memory[offset:offset+length], topic0)
LOG2
0xa2
(offset, length, topic0, topic1) => ()
emit(memory[offset:offset+length], topic0, topic1)
LOG3
0xa3
(offset, length, topic0, topic1, topic2) => ()
emit(memory[offset:offset+length], topic0, topic1, topic2)
LOG4
0xa4
(offset, length, topic0, topic1, topic2, topic3) => ()
emit(memory[offset:offset+length], topic0, topic1, topic2, topic3)
CREATE
0xf0
(value, offset, length) => (addr)
addr = keccak256(rlp([address(this), this.nonce]))[12:] addr.code = exec(memory[offset:offset+length]) addr.balance += value this.balance -= value this.nonce += 1
CALL
0xf1
(gas, addr, value, argsOffset, argsLength, retOffset, retLength) => (success)
memory[retOffset:retOffset+retLength] = address(addr).callcode.gas(gas).value(value)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)
CALLCODE
0xf2
(gas, addr, value, argsOffset, argsLength, retOffset, retLength) => (success)
memory[retOffset:retOffset+retLength] = address(addr).callcode.gas(gas).value(value)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)
TODO: what's the difference between this & CALL?
RETURN
0xf3
(offset, length) => ()
return memory[offset:offset+length]
DELEGATECALL
0xf4
(gas, addr, argsOffset, argsLength, retOffset, retLength) => (success)
memory[retOffset:retOffset+retLength] = address(addr).delegatecall.gas(gas)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)
CREATE2
0xf5
(value, offset, length, salt) => (addr)
initCode = memory[offset:offset+length] addr = keccak256(0xff ++ address(this) ++ salt ++ keccak256(initCode))[12:] address(addr).code = exec(initCode)
STATICCALL
0xfa
(gas, addr, argsOffset, argsLength, retOffset, retLength) => (success)
memory[retOffset:retOffset+retLength] = address(addr).delegatecall.gas(gas)(memory[argsOffset:argsOffset+argsLength]) success = true (unless the prev call reverted)
TODO: what's the difference between this & DELEGATECALL?
REVERT
0xfd
(offset, length) => ()
revert(memory[offset:offset+length])
SELFDESTRUCT
0xff
(addr) => ()
address(addr).send(address(this).balance) this.code = 0